An Effective Cold Start Recommendaton Method Using A Web Of Trust

نویسندگان

  • Yu-Hao Wan
  • Chien Chin Chen
چکیده

Cold start recommendations are important because they help build user loyalty, which is the key to the success of e-services and e-commerce systems. Recommending useful information for new users generally creates a sense of belonging and loyalty, and encourages them to visit e-commerce systems frequently. However, as new users take time to become familiar with recommendation systems, the systems usually have limited information about newcomers and have difficulty providing appropriate recommendations. The cold start phenomenon has a serious impact on the performance of recommendation systems. To address the problem, we propose a cold start recommendation method that integrates a web of trust with a user model to identify trustworthy users. The suggestions of those users are then aggregated to provide useful recommendations for cold start users. Experiments based on the well-known Epinions dataset demonstrate that the proposed method is effective and efficient, and outperforms well-known recommendation methods by a significant margin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

TrustRank: a Cold-Start tolerant recommender system

The explosive growth of the World Wide Web leads to the fast advancing development of e-commerce techniques. Recommender systems, which use personalised information filtering techniques to generate a set of items suitable to a given user, have received considerable attention. Userand item-based algorithms are two popular techniques for the design of recommender systems. These two algorithms are...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

Using Trust in Recommender Systems: An Experimental Analysis

Recommender systems (RS) have been used for suggesting items (movies, books, songs, etc.) that users might like. RSs compute a user similarity between users and use it as a weight for the users’ ratings. However they have many weaknesses, such as sparseness, cold start and vulnerability to attacks. We assert that these weaknesses can be alleviated using a Trust-aware system that takes into acco...

متن کامل

Credibility-based Social Network Recommendation: Follow the Leader

In Web-based social networks (WBSN), social trust relationships between users indicate the similarity of their needs and opinions. Trust can be used to make recommendations on the web because trust information enables the clustering of users based on their credibility which is an aggregation of expertise and trustworthiness. In this paper, we propose a new approach to making recommendations bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011